车牌识别是实现“互联网+智能停车”的最大推动力

10
发表时间:2020-03-25 14:57作者:kdacctv

随着互联网的不断发展,各行各业都涌入了这股浪潮。停车行业也不例外,从最初的人工管理车辆到目前的智能车牌识别管理,这不仅顺应了越来越多车辆的现状,也解决了停车难的问题。


车牌自动识别流程是系统前端采用了嵌入式高清车牌识别一体机,可实现百万级分辨率的视频和图片码流输出,内置了高性能DSP芯片,支持内置智能算法、可实现视频检测、车牌自动识别等功能。


车牌识别一体机系统使用了独特的纹理+模型算法,具有定位精准,识别速度快,识别精度高,误识率低等特点,不但能捕获有车牌的车辆,对于无牌车同样也能进行正常捕获(地感触发模式下)。将传统模式中基于后端服务器或前端工控机的车牌识别算法移植到前端相机中,具有高集成度,高稳定性,高适应性等特点,相比传统的PC或工控机模式,更能适应实际道路的复杂环境,更能满足智能交通系统中全天候工作的要求。


采用了动态视频识别技术,实现对视频流每一帧图像进行识别,从而达到增加识别比对次数,大大提高了识别的效率和准确率。


车牌自动识别主要是基于图像分割和图像识别理论,对含有车辆号牌的图像进行分析处理,从而确定牌照在图像中的位置,并进一步提取和识别出文本字符。


识别的具体步骤分为车牌定位、车牌提取、字符识别。在自然环境中,相机首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。


完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别,车牌识别算法采用基于模板匹配算法,首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹配作为结果,通过这种多次比对的方式极大了提高了车牌识别的准确率。


website qrcode
关注我们: